

Detailed Design sdmay25-01 "ProJect ELM"

James Minardi, Eli Ripperda, Lindsey Wessel, Mason Inman

PROBLEM STATEMENT

PROBLEM

- People with mobility and cognitive impairments face many challenges including maintaining independence and safety.
- Lack of advanced wheelchair technologies, leaving gaps in autonomy, communication, etc.

OUR CLIENT

 Formerly volunteered to help with individuals with cerebral palsy and is motivated to help them further.

OUR TEAM

- Create a subsystem that detects, locates, and presents info on a user's eye in a camera.
- Wants to develop assistive wheelchair tech with features including mobility assistance and real-time seizure detection.

Develop a fast and accurate pupil detection subsystem using machine learning algorithms on an FPGA to support our client's vision of advanced assistive technologies.

PROJECT OVERVIEW

SYSTEMS

- Camera
- Eye location algorithm
- Semantic segmentation ML model
- Ultra96 v2 FPGA
- Display

REQUIREMENTS

- Real-time
- Accurate and performant to [NDA] fps
- Display model outputs and debugging information

DESIGN & VISUALS

SYSTEM FLOW DIAGRAM

This represents the flow of data (an image/frame) will go through in our system.

SYSTEM BLOCK DIAGRAM

SYSTEM BLOCK DIAGRAM MAJOR COMPONENTS

ULTRA 96

- PYNQ OS
- I/O ports
- Tensil-AI compiles and runs Semantic Segmentation on Processor

THE MODEL

- Trained Model asynchronously passed to Tensil-AI through SD card
- Tensil-AI creates custom FPGA logic
- The Model runs on 4 CPU cores

I/O Devices

- Webcam connection via USB
- Ethernet connection via micro-USB
- JTAG connection boots OS

FUNCTIONALITY

REAL WORLD USE & RESPONSE

Wheelchair Users...

Turn their Head:

ROI Algorithm detects this and tells the system to do nothing

Move their Head:

ROI Algorithm detects new eye location, the board reduces the image size and passes it to the Semantic Segmentation Algorithm to find the pupil

Experience Stress or Cognitive Overload: System detects stress or overload and stops user control

FUNCTIONALITY

Ó

REAL WORLD USE & RESPONSE

Next Sr Design Team SdDec25... Add Onto This Project: Seamlessly integrate with new parts

Use Output to get Data for Processing: Output reliable data with low latency

MACHINE LEARNING MODEL LAYERS

U-NET ARCHITECTURE

- Down Blocks (yellow)
 - Increase channels
 - Decrease resolution
 - Contextualize
- Up Blocks (blue)
 - Decrease channels
 - Increase Resolution
 - Utilize Skip connections for spatial and contextual information

Functionality

- Imagine you "zoom into" the "TENSIL" block on the bottom left corner of the System Diagram. This figure depicts the details.
- Tensil is a tool to:

TENSIL

 \cap

- Get the ML model able to be on FPGA Dev board
- Intake .tarch and .onyx files
- Outputs all needed files for model to communicate with Ultra96 (Dev board) hardware

AREAS OF CONCERN & DEVELOPMENT

ENVIRONMENT SETUP

- This is a known struggle for previous teams
- There are a lot of different parts coming together on the Ultra96 Dev board
- We expect problems here

Unknows

- With any project, there are unknowns.
- Unknowns in this project can be massive hurdles for our team to get over.

FPS CAPACITY

- Camera must get [NDA] FPS for our system to achieve it.
- Optimizations to ML model may improve but not reach

CONCLUSION

As a result

of our given problem and design diagrams

We will

Increase the performance of an existing FPGA system

To achieve

Throughput high enough to make real-time decisions.

Linking to Our Client's Problem

This increase in data throughput will supplement our client's system, unlocking the ability to predict when end-users might have health-affecting events such as a seizure.

